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Abstract—To strengthen the engineering education at the
NORDAKADEMIE, a new collaborative robot laboratory has
been developed. This laboratory should provide local access as
well as remote access. This paper describes how the remote access
is realised using the CrossLab architecture. For this, a Python
client is used which implements Server Oriented Architecture
Services provided by packages that were developed as part of
the CrossLab project. In addition, the challenges and limitations
found during implementation are discussed.

Index Terms—Collaborative Robotics, Remote Laboratories,
Universal Robots URSe, Engineering Education

I. INTRODUCTION

By taking a critical look on the changing work environment
through automation and (weak) artificial intelligence, we can
assume that there will not be a decrease in available labor
force, but instead workers will have to learn new skills [2],
[3]. Multiple studies try to capture the new skills needed, e.g.
(4], [5].

To meet demand for future development, a good education
in engineering and adjacent areas is needed. One important
part of (engineering) education are laboratories [6], which
provide both important skills [7] as well as improve students’
understanding of domain knowledge [8]. One recent trend
is the movement towards remote laboratories [9], [10], [11]
(and other non-traditional laboratories [12]) instead of physical
laboratories with systems like VISIR [13], WebLab-Deusto
[14] / LabsLand [15], GOLDi [16],[17] or CrossLab [18].
For an overview of the current technology stack of remote
laboratories, see [19].

In future engineering education, competencies in system
automation and work with robots as examples of modern
industrial machinery will play an important part [20, Tab. 2].
An industrial robot is a machine that can be programmed to
move in multiple axes to interact with its environment and
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fulfill some given task [21]. Collaborative Robots are a sub-
category of industrial robots. A collaborative robot is defined
by featuring special safety measures such as force and speed
control or safety-rated monitored stops [21, 5.10]. Whereas
regular industrial robots may pose a danger for humans due to
their high speed and force, collaborative robots are designed to
be used alongside humans to help directly with mundane tasks,
and thus do not require special safety measures such as cages.
Instead, during risk assessment, a safe collaborative workspace
where robots and humans share work areas is defined. To close
the gap between theory and industrial practice, it is important
to include real devices, systems, and techniques students can
train to operate [22, p. 1].

To improve the knowledge students possess about of indus-
trial automation, the NORDAKADEMIE gAG Hochschule der
Wirtschaft is developing a new collaborative robot laboratory.
To facilitate flexibility of teachers and learners, the collabora-
tive robotics experiment should be controllable both in person
and remotely. The laboratory is embedded into the engineering
curriculum as part of a course on production techniques. In
addition to hands-on experience, we want to allow students to
access the laboratory remotely, both to acquire skills for Work
4.0 (see [23]) and to be able to access the laboratory even
when they do not have means of physically traveling to it.

In this paper we describe the setup of making the labo-
ratory available remotely by implementing a software client
against the CrossLab architecture [18]. The focus is on the
technical aspects of the laboratory, which is intended to be
used in teaching in higher education at a German University
of Applied Science. [24] presents a laboratory course in such
a setting as an example for the pedagogical implementation.

II. THE LABORATORY SETUP

Our current laboratory consists of two Universal Robot
URS5e [26] collaborative robots, which are set up in an identical
manner (see Fig. 1): Both robots are mounted in a corner of
a mobile laboratory work bench of with a size of 1250 mm
by 500 mm. We have a number of end effectors available, e.g.



Figure 1. Current setup of the URSe robot. A 2-finger gripper and a wrist
camera are mounted as end effectors. The gripper is holding a block, which
should be placed on two other blocks on the table to build a tower. The
teaching pendant is placed on the table.

a wrist camera, a vacuum gripper, a two-finger gripper, or a
screw driver. While these can be interchanged freely at any
time, for the moment we plan to use a Robotiq 2F-85 gripper
[27] together with the Robotiqg Wrist Camera [28].

A CrossLab experiment consists of several lab devices
that are connected directly to each other via peer-to-peer-
connections over the internet. For this laboratory, the exper-
iment is configured with two laboratory devices: An Exper-
iment Control Panel (ECP) which runs in the browser via
a website to interact with the experiment, and a laboratory
device which features the robot workstation and peripheral
components (Workstation Laboratory Device). Fig. 2 displays
a schematic of the general infrastructure. The workstation
device of the laboratory consists of three components:

1) the actual robot that is mounted on a work bench and

fitted with a gripper that is part of the actual laboratory;

2) a Raspberry Pi 4B that runs a software client written in

Python and connects to said robot; and
3) one (or more) USB webcams connected to the Pi to relay
the robot behavior back to the user.
The Raspberry Pi connects to the robot using a basic
asyncio data stream to transmit data and receive a response.
The robot exposes a TCP/IP socket on ports 30001-30003
[29] where it accepts commands or scripts written in its
programming language URScript, a documentation for which

is provided by Universal Robots (see [30] for the English docu-
mentation). While URScript is technically its own language, it
features a Python-like syntax and is thus accessible to people
with programming experience. The Raspberry Pi sends the
scripts it receives from the ECP to the robot. The ECP can
be exchanged with any device that implements the required
interfaces; in our case it is a website that embeds a form to
submit a file and a media player that can play back a video
stream. The two laboratory devices are connected using the
CrossLab architecture. The Raspberry Pi acts as a front end
for the local device by providing a proxy for the robot over
which the CrossLab architecture can connect.

III. THE SERVICE ARCHITECTURE

The CrossLab architecture [31], [18] makes use of a mi-
croservice design. One of these services is the device service
which handles the registration and management of atomic
laboratory devices. A device may either be a physical piece of
laboratory equipment, cloud software, or an edge-instantiable
device like a web page. By utilizing a booking service [25],
a user can book time slots of serval devices to be used
later in an experiment. Experiments are handled using the
experiment service. Based on the experiment configuration the
laboratory devices are connected to each other using peer-to-
peer connections. For this, each device offers a list of producer
and consumer SOA (server oriented architecture) services'
— a unified interface for data exchange between the devices
that are mapped onto each other for an experiment setup. A
SOA service is usually directional, i.e., one device features a
producer and another device features a consumer which have
to be linked?.

We implemented our client using the Python packages
provided by the CrossLab project [32], [33] (as well as related
libraries). The SOA services a device offers are managed by
a DeviceHandler object where they are registered during
setup. The DeviceHandler also manages the connection
to the CrossLab architecture. The code for setting up the
Handler and connecting it to CrossLab is given in Fig. 3.
Note that in lines 26 and 28, some preparatory tasks were
omitted for brevity. The contents of an example configuration
file are given in the code snippet in Fig. 4. The configuration
options are separated into three categories: robot connection,
connection to the CrossLab infrastructure, and logging config-
uration. Also omitted from the setup code in Fig. 3 (lines 6
and 9) were the setup processes of the two SOA services that
are used for this setup which will be discussed separately in
the following subsections.

'Unfortunately, both the server components as well as the offered commu-
nication channels between devices is called services in the architecture. In this
paper, we use “service” to refer to the server components and “SOA service”
to refer to the device communication.

2Services can also be a producer and a consumer — thus titled prosumer
— at the same time. As of February 2025, the only prosumer implemented is
the ElectricalConnection SOA service, as it opens up a set of pins
instead of a singular data handler, thus ElectricalConnection SOA
services are bi-directional.
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Figure 2. Schematic setup of the laboratory devices. The robot and camera is connected to a Raspberry Pi functioning as a proxy to the CrossLab architecture
[18]. Two services are offered: The robot can be controlled via receiving program files and a camera stream is sent. The receiver of both services can either

be an end user or another (laboratory) device.

I async def main_async() :

2 # DeviceHandler is the main class to handle
the device

device = DeviceHandler ()

5 # Snippet to handle the file service

8 # Snippet to handle the webcam service

11 # Authentication and starting the device
handler task:

12 async with APIClient (config["auth"]["api"])
as apiClient:

13 logger.debug ("Starting client connection")

14 apiClient.authToken = config["auth"] ["token
"]

15 deviceHandlerTask =

16 device.connect (

1 config["auth"] ["api"] + config["auth"][
"path"] + config["auth"]["device_id"],

18 apiClient

19 )

20 )

21 logger.info ("Device set up and ready.")

2 await deviceHandlerTask

asyncio.create_task(

24 def main() :
25 # read config

27 # prepare logging

29 asyncio.run(main_async())

2 if name == "__main__ ":

main ()

Figure 3. Main program structure. After some initial preparations (reading
the config file and setting up a logger) an asynchronous method is started.
Within this method, a DeviceHandler object is created. A file service
(cf. Fig. 5) and a webcam service (cf. Fig. 6) are created and attached to the
DeviceHandler. The DeviceHandler then connects to a CrossLab API
server and awaits a PeerConnection.

2 "robot": {
"ip": "127.0.0.1",
4 "port": 30002
5 br
6 "auth": {
7 "api": "https://crosslab.example.com/",
8 "path": "devices/",
9 "device_id": "uuid",
10 "token": "token-hash"
11 5o
12 "logging": {
13 "level": "NOTSET",
14 "name": "LOGGER",
15 "device": "sysout",
16 "filename": "./logfile.log"

Figure 4. The contents of an exemplary configuration file with dummy values.
The configuration is separated in three categories: connection data for the
Cobot, authentication data for the API server, and configuration options for
the logger. The configuration is formatted in JSON.

A. The File Service

This SOA service allows a system to send or receive a
small file. We use this service so that a student can submit
program code to our robot; however, as other Receivers (cf.
Fig. 2) are possible, one might also imagine linking this service
to e.g. an Al for auto-generated programs. The submitted
program code has to written in URScript. The code snippet
in Fig. 5 is used to set up a file consumer. The file is
received as the content blob of an event. After an event has
been triggered, the TCP connection to the robot is opened
up using an asyncio stream on a configurable IP address
and port. Note that it is necessary to wait for the response of
the robot: As per documentation, at least 79 bytes should be
read from the socket before it closes, otherwise the robot may
drop instructions. However, as the read bytes have no defined
meaning to a user, we can immediately discard them. Note
also the string ' program’ in line 1 — this label will identify



I fileService = FileService__Consumer (' program’ )
> @fileService.on(’file’)

3 async def onFile(event: FileServiceEvent):
4 logger.debug ("onFile")

5 # read data from upstream

6 data = event[’content’]

# write data to robot

8 reader, writer = await asyncio.
open_connection (config["robot"] ["ip"],
config["robot"] ["port"])

9 writer.write (data)
10 await writer.drain()
11 logger.debug ("Sent program to robot")

13 # read robot response

14 # undefined and not useful for us; but
needs to be read as per robot documentation

15 _ = await reader.read(100)

16 await asyncio.sleep(l) # to wait for the
robot to be able to read the program

1 await writer.wait_closed()

18 logger.debug ("Reveiced response from robot"
)

9 device.add_service (fileService)

20 logger.debug("File service set up")

Figure 5. Code Snippet written in Python for the FileService
Consumer. A new file service is created and added to the device. When
the service receives a file it unpacks the file’s contents and transmits them
to the robot using asyncio. It then reads the response from the robot, but
since the content of this response is not useful, it is immediately discarded.
Everything from the linked device producing a file to this service receiving
it is handled in the background by the CrossLab architecture [18].

the SOA service during the experiment configuration as to be
able to differentiate different SOA services of the same type.
This service is embedded into the main program (Fig. 3) in
line 6.

B. The Webcam Service

This SOA service allows for the transmission of a webcam
stream utilizing GStreamer® [34] to en- and decode the data
stream. The code snippet for setting up the SOA service
is displayed in Fig. 6. Constructing the codec pipeline for
GStreamer takes up most of this SOA service. The identifying
label (in this case ' webcam’ ) follows as the last parameter
of the constructor. We use this service so that a student can
observe the live execution of the program they just submitted.
The Raspberry Pi of the local device offers a WebCam
Producer — a service that transmits a video stream. This
stream is caught by the remote device (e.g., the ECP website)
and displayed to the user. This service is embedded into the
main program (Fig. 3) in line 9.

IV. TRIALING THE EXPERIMENT

To test our implementation of the robot connection to
the CrossLab architecture, we manually verified the output
of multiple test scripts. These scripts ranged from simple

3GStreamer is a multimedia framework for working with different multi-
media streams, e.g. capturing a stream from a webcam and saving it in many
different formats. It uses plug-ins to support a high number of media formats.
It works on all major operating systems.

I webcamService = WebcamService_ Producer (

2 GstTrack (
(" ! ") .Jjoin ([
4 "v41l2src device=/dev/videoO",
5 "’ image/jpeg, width=640, height=480,

framerate=30/1"",
6 "v412jpegdec",
7 "v41l2h264enc",
8 "'video/x-h264,level=(string)4’",
9 1,
10 ) o
11 "webcam",
12 )
13 device.add_service (webcamService)
14 logger.debug ("Webcam service set up")

Figure 6. Code Snippet written in Python for the WebCam Producer. A
new video stream is created and the service is added to the device. Everything
else is handled in the background by the CrossLab architecture [18].

movement containing just a few commands to complex tasks*.
For example, one script was a picking experiment, where the
robot has to grip multiple work pieces and build a tower with
them. This does not only need high precision (else workpieces
would be missed or the tower would fall down), but also the
usage of advanced commands (such as stop moving when
a reaction force was detected and controlling the gripper).
This task is similar to what our students would do and uses
capabilities that can be found in industrial settings.

Every script was run locally on the robot and sent through
the CrossLab architecture. We were able to verify that all
scripts were executed correctly and the output of the robot was
identical in both cases for all of our test scripts. Therefore,
we were able to conclude that our implementation worked
correctly. We plan to use the new interface of the robot in
teaching to ensure the implementation works with real student
scripts as well as when used under higher load, i.e., when
many students send script files in quick succession.

V. DISCUSSION
A. On the Separation of the Client from the Cobot

In Sec. II it was already described that the Cobot is
connected to the internet and exposes a socket to receive
scripts. If the Cobot already has this capability, why then,
one might ask, is the proxy in the form of the Raspberry Pi
necessary?

There were two reasons for this decision: firstly, we were
unwilling to expose the robot to the public internet. By proxy-
ing through a separate device that can only connect directly to
the robot in a very specific instance — namely when it receives
a script file through an authenticated channel — minimizes the
risk of stray login attempts. Of course, allowing one to send a
script file which is then executed without any further checks
bears risk in itself, especially since the transmitted file contents

4In addition, some scripts where created using the teaching pendant and
the operating system — PolyScope — and exported. Others were programmed
manually on a PC. This ensured that different coding styles and formatting
worked.



could be anything the connected device wishes to send, script
file or not. However the safety mechanisms of the Cobot still
apply during script execution, and simple tests® resulted in a
preliminary finding that a script could not easily break out of
its runtime, so ostensibly the worst that could happen would
be the Cobot canceling or refusing execution of an invalid
program or colliding with something within its working area,
in which case it would halt in an emergency state anyway.

The second reason lies with the software. While the Cobot
runs on linux and one can connect to it as root using SSH, we
consider running software that was not verified by the producer
as a bad idea. As we could not estimate how installing third-
party packages could mess with the Cobot operating system
and its software dependencies and if any legal issues® arose —
or even if, in the worst case, some of the safety features could
get broken this way — we quickly came to the decision that
running the CrossLab client on a separate device and using
only the provided socket for communication would be the
better and more controllable option.

B. Possible Extensions

While providing the ability to run scripts is a good start,
we would like to offer more options in the future. Since the
CrossLab architecture provides several other SOA services, we
would like to take advantage of them. For example, a Message
Service Consumer could be implemented so users can send
singular URScript commands to the robot instead of entire
scripts. Furthermore, we would like to offer the possibility to
users to directly send the TCP (tool center point) coordinates
through a Parameter Service Consumer and let the inverse
kinematic of the robot calculate the movement. Finally, we
want to streamline using the gripper end effector as part of
a program — currently, about 2000 lines of auto-generated
boilerplate code need to be copied into a program to have
the gripper functionality available.

C. End Effectors

One limitation lies with the availability of end effectors.
While the client works fine with a gripper, our Cobot is also
equipped with a wrist camera. However, as per inquiry to
the manufacturer, it is not possible to use the wrist camera
outside of the functionality provided by the teach pendant’ —
this means, in particular, within our remote setup. Thus, while
a student working with the physical robot can also utilize
the object detection capabilities we have available, remote
experimenters are locked out from such experiences. Other
end effectors (like a vacuum gripper) might be possible to
integrate, but were not tested yet.

D. Limitations

Unfortunately, due to several reasons, we were as of yet
unable to test the setup in a live teaching environment.

Sfor example, using the Python function eval to try to access system files

6e.g., with regards to unpermitted modifications or warranty

7 As of the time we posed this inquiry (19th Feb. 2024), we used PolyScope
5.12.4.1101661 with the Wristcam plugin on version 1.11.3.13312

This means that while initial trials were promising, further
evaluation is needed, to test the performance at scale, to see
how well the setup handles higher request frequencies, as well
as to gauge student acceptance and usability.

VI. CONCLUSION

This paper presents the technical setup of a client to connect
a URS5e collaborative robot with the CrossLab infrastructure.
The client accepts a program for the robot as a script file
written in URScript and provides a webcam stream to observe
the robot response. This experiment device, as it is called
in CrossLab nomenclature, is intended to train students of
engineering and computer science in the programming of in-
dustrial machinery. First tests were conducted, although proper
tests at scale with many students are still outstanding. Other
limitations, as well as possible extensions, were discussed.

While this project certainly has its limitations, we believe
it is a step in the right direction. Both remote control of
machinery and robotic automation are essential skills in the
IoT and Industry 4.0 areas, and as such this project opens up
another venue of gaining experience for our students.
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