Utilizing Augmented Reality to Create and Control
a Digital Twin of a Collaborative Robot

Mohamed-Kamel Koumenji; Marcus Soll; Louis Kobras; Jan Haase

2025 7th Experiment@ International Conference (exp.at'25), 2025/2026

© 2026 IEEE. Personal use of this material is permitted. Permission from IEEE must be
obtained for all other uses, in any current or future media, including reprinting/republishing
this material for advertising or promotional purposes, creating new collective works, for
resale or redistribution to servers or lists, or reuse of any copyrighted component of this work
in other works.

IEEE Xplore: https://ieeexplore.ieee.org/document/11348279/

DOI: 10.1109/exp.at2565440.2025.11348279

https://ieeexplore.ieee.org/document/11348279/
https://doi.org/10.1109/exp.at2565440.2025.11348279

Utilizing Augmented Reality to Create and Control
a Digital Twin of a Collaborative Robot

Mohamed-Kamel Koumenji

NORDAKADEMIE gAG Hochschule der Wirtschaft

25337 Elmshorn, Germany
mohamed.koumenji.maise2 1o @nordakademie.org

Louis Kobras
NORDAKADEMIE gAG Hochschule der Wirtschaft
25337 Elmshorn, Germany
louis.kobras @nordakademie.de

Abstract—Robotic automation is an integral part of modern
industry. It is thus imperative to prepare students of engineering
and computer science to handle industrial robots. However, as
stopping a single machine can impact the productivity of an entire
facility, training on live machinery might not always be feasible.
Likewise, setting up enough laboratory space and equipment for
students to use during their studies requires much available space
and funding and thus also might not always be feasible. This
paper presents a prototype of a digital twin for a collaborative
robot arm. The digital twin makes use of augmented reality
for visualisation and connects to either a physical robot or
a simulated robot controller inside a virtual machine. Several
aspects of the implementation as well as limitations and lessons
learned are described.

Index Terms—Augmented Reality, Collaborative Robots, Dig-
ital Twin, Unreal Engine, Universal Robots URSe, HoloLens

I. INTRODUCTION

The use of automation technology is something without
which modern production lines are unthinkable. With the
spending on robotic process automation being expected to
grow nearly exponentially by 2032 in one prognosis [2] and
the global market revenue for industrial robots on an upwards
trend at least until 2028 in another [3], it is safe to say that
robotic automation is here to stay. As such, it is imperative
to include the subject of robotics in the education of students
of engineering and computer science to help them prepare to
work in modern production environments.

Part of robotic automation is the notion of collaborative
robots. A collaborative robot is an industrial robot that em-
ploys special safety measures to enable collaborative work
alongside humans [4, Sec. 5.10]. An industrial robot is a
machine that can be freely programmed in multiple axes to
manipulate and interact with its environment [4]. In contrast
to industrial robots, which may move with high velocity and
large loads and are thus potentially dangerous to bystanders,

This research was part of the project Flexibel kombinierbare Cross-Reality
Labore in der Hochschullehre: zukunftsfihige Kompetenzentwicklung fiir ein
Lernen und Arbeiten 4.0 (CrossLab) [1], which is funded by the Stiftung
Innovation in der Hochschullehre, Germany.

Marcus Soll
NORDAKADEMIE gAG Hochschule der Wirtschaft
25337 Elmshorn, Germany
marcus.soll @nordakademie.de

Jan Haase

NORDAKADEMIE gAG Hochschule der Wirtschaft

25337 Elmshorn, Germany
jan.haase @nordakademie.de

collaborative robots (or Cobots) make use of one or more of
several features to increase safety within the working area,
namely: comparatively lighter loads and slower speeds than
standard industrial machines, an automated emergency stop
functionality, or hand guided movement [5]. Due to the special
safety considerations, collaborative robots can share a working
area with humans (so called collaborative workspaces; [4,
3.5]) which allows for automation to be weaved into human
processes while still adhering to the same general principles
of industrial automation (such as the method of programming,
axis control, etc.).

While a collaborative robot in itself can be considered safe,
a laboratory space may not necessarily be, due to environ-
mental hazards like other laboratory equipment or other lab
workers that need to be kept aware about a robot’s movement.
Additionally, setting up a work space to train working with a
robot requires both (continuous) funds [6, p. 221] and space,
both of which are usually limited, in turn limiting how many
students at a time can interact with a robot. Furthermore, a
work space that has been set up once may not be mobile or
easily movable (cf. [6, p. 224]). By providing a digital twin
(DT) that students can interact with using augmented reality
(AR), all of these issues can be mitigated: an AR simulation
cannot hurt bystanders' and can be taken somewhere without
hazards; it is cheaper and more space efficient to purchase
more AR devices than to set up more work spaces; and
students can borrow an AR device to practise at home.
An extensive literature survey conducted by Suzuki et al.
demonstrates that AR applications for collaborative robotics
are an active field of research with diverse foci and use cases
[7], further cementing the viability of this study?. Incidentally,
the AR device also makes for a good demonstration object for

'Obviously, there is still a risk of a rogue fist to consider. However as AR
— in contrast to VR — doesn’t entirely impede vision, one can assume that
people using an AR device can still take care not to punch their lab partner.

2As it were, this study neatly slots into the categories of Facilitate
Programming, Support Real-time Control and Navigation and Improve Safety
of the different purposes Suzuki et al. [7, Sec. 5] identify.

User Interface

Hololens 2

Control Unit
Universal

Robots UR5e

AR Hologram
(Digital Twin)

Processing Unit ‘

LI Holographic Remoting

Cable
Connection

Video
transmission

Control
Input

Communication Interface

. uDP
Unreal Engine

Digital
twin

ubP

Control Interface

RTDE

% [Behaviour]<}:|

[Receiver

Behaviour Interface ’<;:

2

LS

Teach Pendant

Figure 1. Schematic representation of the information flow between the DT, its AR representation, and the actual robot. The four principal components —
User Interface, Processing Unit, Communication Interface, and Control Unit — are highlighted with separate borders and labels.

interested parties that cannot visit the laboratory. This paper
presents a prototype of an AR DT of the UR5e collaborative
robot developed by Universal Robots [14] which is controlled
using a Microsoft HoloLens 2 [15]. The Cobot is equipped
with a wrist-mounted camera [16] and 2F-85 2-finger [17] by
Robotiq [18].

Compounding on the issues of safety, space, and up-front
funding, stopping a robot — and thus possibly stopping an
entire production line — can be expensive for companies, hence
methods are needed through which a robot can be programmed
with minimal downtime. One possible solution for this is
programming a robot in a simulated environment before trans-
ferring the completed program to the live equipment. This
work proposes the use of an AR DT to facilitate students
learning how to engage with a collaborative robot 1) in a
safe environment 2) through scalable means 3) that are also
easily transferable to different locations. Agca identifies a gap
in research on DTs in an educational context and states that
DTs, along with other technologies like artificial intelligence,
may be used to address future educational needs, especially in
the context of virtual or online learning and as stopgaps for
societal inequality [8]. Considering this alongside the sudden
surge of necessity concerning remote and hybrid teaching that
arose during the COVID-19 pandemic [9], [10] grants a certain
amount of gravitas to any effort of enabling mobility and
scalability in education.

Although an accepted general definition of the concept
of a digital twin does not seem to exist yet [11], a coarse
concept of DTs can be assumed to be a digital system that
mirrors the state and operations of a physical system (thus,
“twinning” a physical system) [12, p. 1017]. Kritzinger et

al. differentiate between a digital model, a digital shadow,
and a digital twin, identified by the degree of integration
concerning the automated information exchange between the
physical and digital system. The digital model is defined by
completely manual information exchange, the digital shadow
receives automated information updates by the physical object,
and the DT features automated information exchange in both
directions [12].

II. GENERAL SYSTEM ARCHITECTURE

The system architecture comprises four core components:
the User Interface, the Processing Unit, the Communication
Interface, and the Control Unit. The schematic information
flow between the different components is displayed in Fig. 1.

The User Interface (Human-Machine Interface) is imple-
mented through the HoloLens, enabling interaction between
the user, the DT (virtual representation), and the Real Twin
(physical robot). The HoloLens integrates real and virtual
content by rendering the DT as a holographic object within
the user’s real-world environment. The real-time transmission
of graphical content, computed by the Unreal Engine, is
achieved via Holographic Remoting® to the HoloLens. The
Interaction with the digital and real twins is realised through
the user’s hand gestures and voice commands, which are
captured and interpreted by the HoloLens. These inputs are
then transmitted in real time to the Processing Unit (Unreal
Engine) via Holographic Remoting.

The Processing Unit is implemented using the Unreal En-
gine. It receives user inputs from the HoloLens and translates

3Holographic Remoting is a HoloLens app that allows a user to display a
VR model streamed from another device.

them into commands for the Control Unit, which executes the
physical movements. Additionally, the Unreal Engine receives
behavioural data (e.g., joint positions) from the Real Twin via
the Control Unit and transfers this data to the DT to update
its state in real time. The Unreal Engine is also responsible
for computing the graphical content of the DT, which is
transmitted to the HoloLens via Holographic Remoting.

The Control Unit consists of the real twin and the Teach
Pendant. It receives movement commands from the user via
the HoloLens and the Unreal Engine and executes them as
physical actions of the robot. Simultaneously, the Control Unit
collects data (e.g., joint positions) and transmits this data to the
Processing Unit via the Communication Interface. This data
is used to update the state of the DT in real time, ensuring
accurate feedback for the user. The Teach Pendant can either
be simulated* or connected to a physical robot.

The Communication Interface enables the bidirectional
transfer of control commands and behavioural data between
the Processing Unit and the Control Unit. Data transmission
is facilitated using protocols such as UDP (User Datagram
Protocol) for low-latency control commands and RTDE (Real-
Time Data Exchange) for sensor data feedback. This ensures
precise and responsive communication between the system
components.

III. IMPLEMENTING THE MODEL IN THE GAME ENGINE

To ensure a precise geometric representation of the DT, the
CAD models provided by the manufacturers of the different
components (Universal Robots for the URSe robot [19] and
Robotig for the 2F-85 gripper [20]) were utilized. Given that
the Unreal Engine lacks native support for CAD files, the mod-
els were transformed through an intermediary process involv-
ing Autodesk Inventor [21] and Blender [22]. The CAD mod-
els, initially downloaded in STEP file format, were imported
into Autodesk Inventor, where they were decomposed into
their constituent movable components. This decomposition is
essential, as not doing so would result in the models being
interpreted as rigid, atomic entities in Blender and Unreal
Engine, thereby complicating the subsequent implementation
of rotational kinematics for their individual components.

Following decomposition, the components of each model
were exported from Autodesk Inventor in Wavefront OBJ
format and imported into Blender. Within Blender, each com-
ponent underwent individual processing, which included the
assignment and alignment of a local coordinate system.

The alignment of the local coordinate system for the URSe
components adheres to the Denavit-Hartenberg (D-H) con-
vention: The Z-axis defines the rotational axis, the X-axis is
derived as the cross product of adjacent Z-axes, and the Y-axis
completes the right-handed coordinate system. For the gripper
joints, the Z-axis was similarly designated as the rotational
axis. This methodological approach ensures an accurate digital
representation of the mechanical motion transmission across

4Universal Robots offers a virtual machine which can emulate the robot
and Teach Pendant. We used version 5.17.0, which is no longer available at
the time of writing.

the joints and linkages of both the robot and the gripper,
faithfully replicated in the DT within Unreal Engine.

Upon completion of processing, each component was ex-
ported from Blender to Unreal Engine in FBX file format. Due
to the disparity between Blender’s right-handed coordinate
system and Unreal Engine’s left-handed system, the Z-axis was
oriented upward and the X-axis forward in Blender’s export
settings to preserve the correct alignment of local coordinate
systems during the transfer process.

All components were assigned Unlit Materials in the engine.
This follows the recommendations by Microsoft due to con-
cerns regarding the performance of the HoloLens [23], which
we can confirm improved the performance noticeably’. Both
the robot itself as well as the gripper were realised as classes
containing a hierarchy of the different parts — this facilitated
the handling of relative data each part holds with regards to
is predecessor, such as position.

IV. IMPLEMENTING THE BEHAVIOUR OF THE DT

For an accurate representation of the physical robot’s be-
haviour, the joint configurations and Tool Center Point (TCP)
position of the physical robot are captured in real-time from
the PolyScope® control software and transmitted to the Unreal
Engine. The data is used to continuously update the joint
positions and TCP of the digital twin. This approach relies on
the precise geometric and kinematic replication of the physical
robot, ensuring that the DT is fully synchronized to the real
twin. The unified control through PolyScope allows seamless
transfer of programmed sequences between the physical robot
and its digital twin, significantly streamlining development
and testing processes. Behavioural data acquisition and trans-
mission to the Unreal Engine were implemented through a
dedicated Behaviour Interface, utilizing the RTDE protocol,
implemented via the ur_rtde library [24], to communicate
with the robot controller. This library also enables access to
Dashboard features (such as motor start) and the API of the
gripper.

Using the Receive Interface provided by RTDE, the
joint positions and gripper TCP coordinates of the robot can
be retrieved and transmitted to the game engine. The data is
transformed into JSON (JavaScript Object Notation). Initial
attempts transmitted these data in a continuous loop which
could be measured at about 1200 updates per second; however,
as RTDE refreshes at a maximum of 500 Hz and the HoloLens
is capped at 60 FPS, the transmit frequency was throttled to
128 Hz to reduce system load. As the robot moves with at
maximum 1 m/s this translates to a movement of about § mm
per update. 128 Hz allows for smooth movement both on the
HoloLens as well as a commercially available PC monitor that
runs with 120 Hz.

SWith lit materials, we encountered issues in simulating the DT smoothly
even on computers with strong GPUs.
5The controller and programming software of the UR cobots.

The data received by the game engine’ is then passed to
actors implementing a specific interface. This facilitates the
addition or removal of specific actors since a new actor just
needs to implement said interface. The interface then triggers
an update-function in an actor; e.g., the robot updates its joint
and TCP positions in accordance with the received data.

One notable difference between the robot itself and the
gripper is that the gripper is a third-party add-on to the robot,
not a part of the robot itself; thus, while a PolyScope plugin to
use the gripper as part of a robot program exists, the gripper
is itself not simulated in PolyScope, leading to the need to
implement a separate control mechanism for the DT. This is
done by utilising the digital I/O interface of the Cobot that
can be and written to and read from within PolyScope. Thus,
a corresponding signal both for opening and closing can be
programmed into the digital I/O ports that can be interacted
with by the DT. Implementing the opening and closing of
the gripper for the DT makes use of the same data handling
mechanisms as controlling the robot itself. As the opening or
closing is just a rotation of the fingers in opposing directions,
most functionality can be trivially adapted from the robot. The
gripper actor loops over an increment or decrement of its joint
positions until the desired position has been reached. However,
the first attempt of this loop ran too fast for the visualisation
to keep up, so a delay had to be introduced.

The gripper features a Sphere Collision component for
work pieces to interact with. Virtual work pieces® were also
implemented as actors with a Sphere Collision component”.
To identify when a work piece actor should be considered
gripped, the intersection between the work piece collision
and the gripper collision is detected. If such an intersection
is detected during a closing action of the gripper, the work
piece actor is anchored to the gripper to simulate moving it'°,
disabling the work piece’s own physics to avoid artefacts in
the simulation (such as jittering). To let go of a work piece
the gripper model is visually opened and the anchoring is
cancelled. A small delay is interjected so that the work piece is
visually only let go by the gripper once the fingers have started
opening. Physics are then re-enabled for the work piece so that
it can fall down and collide with the virtual table.

V. USER CONTROL

The control of both the physical robot and its digital twin
is based on the teach method, which allows the user to
manually manipulate the end effector within the workspace.
Traditionally, this is achieved by directly applying force to
guide the end effector, resulting in the displacement of the

TThe Socket IOClient-Unreal-Plugin [25] was used to facilitate UDP
and JSON handling.

8In our laboratory, students are tasked with programming the Cobot to stack
cubes. To keep the DT similar to the physical laboratory, the implemented
work pieces were also cubes of the same size as the physical ones.

°In addition, a Static Mesh component is used for the visualisation.

10The virtual work piece object is visually snapped to the gripper and its
width is used to interpolate the opening angle of the fingers, widening or
closing the fingers as necessary.

TCP position in the working space and generating a joint angle
configuration that defines the robot’s joint positions.

In this work, however, the displacement of the end effector
is not induced by the application of direct force but rather by
the user’s hand movements. When the user moves their hand,
the HoloLens captures the 3D positions of the hand during
the motion and transmits them sequentially as input events
to the Unreal Engine via Holographic Remoting. The data
is then forwarded to the Control Interface, which calculates
the displacement between each pair of consecutive positions
(the latest and the newest one), transforms it, and transmits it
to the Polyscope control software. The software applies this
information to the robot’s TCP coordinates, generating a new
joint configuration. This updated configuration is simultane-
ously transmitted to the DT via the behaviour Interface and to
the physical twin via a wired connection, ensuring real-time
synchronization between the two.

The user can use both hands to manipulate the gripper TCP
of the DT. After using a pinch gesture !!, the right hand of
the user can be used to control the TCP position of the virtual
robot. Its spatial orientation can be controlled using the left
hand. The hand controls are mutually exclusive, i.e. only one
hand can be used at a time. While this may seem inconvenient
at first — since it forces the user to continuously switch between
hands — it allows for separation of the position and orien-
tation manipulations, thus preventing accidental orientation
changes during position changes and vice versa, while also
allowing for easier rotation control. This control mechanism
utilizes the pre-defined input methods UxtRightGrab and
UxtLeftGrab, respectively. As the actor class for the Cobot
cannot directly interact with the hand positions, another actor
was created at both palms which is moved in relation to the
hands. The orientation of the palm actors in the three spatial
axes is then relayed to the Cobot controller, where it is mapped
to the corresponding gripper TCP data. The movement vector
is calculated by getting the TCP position from the robot,
calculating the difference to the position that had been passed,
and adding the difference to the current position'?. A check is
then performed using the RTDE interface whether an inverse
kinematics solution for the target position exists and if the
target position is within the safety limits of the robot before
it is sent to the robot controller.

Variable thresholds and a parameter for impact were in-
cluded that modify how strongly the robot reacts to hand ges-
tures, with the thresholds cutting of miniscule and very large

""The HoloLens, equipped with an advanced hand-tracking system, can
recognize spatial gestures. The pinch gesture was selected as the primary
input method.

I2Note that the function getActualTCPPose () the RDTE interface
provides returns the TCP position as a rotation vector, while the hand
movement is described as a vector containing the magnitude and direction of
the hand displacement in the respective dimension. To adjust the TCP position
according to the hand movement, both vectors are converted into quaternions,
added together, and then transformed into a rotation vector. The resulting
vector is subsequently transmitted to Polyscope to update the TCP position.
Quaternions ensure a unique solution, in contrast to rotational matrices that
can yield multiple valid solutions due to their inherent ambiguities. Before
sending the target position to the robot controller.

movements and the impact defining how strongly movement
of a hand is scaled up for the robot. These parameters, among
others, are displayed in a virtual floating panel and can be
manipulated at will (within certain limits) using sliders. Other
sliders include the gripping force and opening and closing
speed for the gripper as well as a limiting threshold for the
maximum gripper opening. The floating panel also features
buttons to open, close, and initialise'* the gripper. The size of
a newly created virtual work piece can also be manipulated
using a slider.

The DT also accepts voice commands. To actually be able
to move the robot via hand gestures, it first needs to be put
into freedrive'*. This is achieved using the voice command
“start freedrive”'. Further voice commands were imple-
mented that manipulate the freedrive speed. A new work piece
can be created, picked, and placed using the voice commands
“cube”, “pick”, and “place”, respectively. The Cobot can
be moved into predetermined positions using “move start”,
“move home”, and “move zero”, where start corresponds to
the starting place of a test application (see Sec. VI); zero
sets all joint positions to 0°, and home moves the cobot in
the 90° angled position that corresponds to the home position
in PolyScope. Further voice commands exist to create a new
programme, add waypoints to the programme, and manipulate
the gripper and work pieces as part of a programme. A defined
programme can be launched using the command “program
start”.

VI. EVALUATION

A simple test application was programmed and run in
PolyScope, with the resulting behavioural data being transmit-
ted to the DT. It was then observed whether the simulated robot
within PolyScope and the DT in Unreal behaved identically. It
could be confirmed visually that the simulated Cobot and the
DT moved virtually identically (with a small delay between
the two models). The same routine also successfully tested the
creation, picking, and placing of virtual work pieces.

A first formal usability evaluation of the prototype has been
conducted using a usability checklist. Said usability checklist
[13] is developed by the CrossLab project'® and rates the
usability of a laboratory or experiment on eleven different
scales. According to the authors of the checklist, it is based
on research on both usability in general as well as usability
for cross reality laboratories. Applying the checklist to the
prototype yields the result displayed in Fig. 2.

3When the Cobot is booted up, the gripper is in an uninitialised state. Only
after running the initialisation the gripper accepts commands.

1410 freedrive mode, the motor controls of the robot are released and the
robot can be freely moved around. For a physical robot, this is essential for
manual teaching, however it also disengages some safety mechanisms. The
physical robot only enables freedrive via a dead man’s switch connected to
the robot via cable to ensure someone is around when the robot moves freely.

15 Analogously, “stop freedrive” exits freedrive mode.

16The current version of the checklist can be accessed under a Creative
Commons licence. However, since it is currently an early release, papers about
it are in progress. Still, we believe that it is in a state we feel comfortable to
apply it to our DT.

Usability across categories

Connecting to
laboratory
0%

80%

9
Development 60%
Process 40%

Perspective Shift Technical Quality

Interaction Modes

Accessibility Immersion

Information Display. Feedback to users

Rules and

Up-to-date-ne Regulations

Figure 2. Usability diagram of the application

The exact percentage scores are not especially relevant as
the checklist was designed with making general observations
and giving general pointers in mind. That said, some things are
immediately evident. The prototype reaches an excellent score
in Up-to-date-ness (measuring the topicality and relevance
of the investigated technology), with additional good scores
in Connecting to laboratory (measuring the technical setup
required) and Immersion. At the same time, glaring issues are
made obvious with regards to Rules and Regulations (e.g.,
concerning a transparent privacy policy), Accessibility, and
Perspective Shift (which takes the evaluative perspective away
from the laboratory developer or educator and instead focuses
on learners or administrative personnel). All these issues can
be interpreted as “To-Dos” for the further development of the
prototype.

VII. CAVEATS AND LESSONS LEARNED

While the prototype in itself works as intended, there are
still some caveats that need to be noted as well as some
stumbling blocks one needs to be aware of before trying to
replicate this project.

a) Technical Reliability: For its price tag, we found the
capabilities of the HoloLens to detect motion controls to
be somewhat lacking. While this issue also correlates with
computational capacity, even with a decently strong machine
we still occasionally experienced problems with detecting
hand gestures.

b) Model Availability: While both Universal Robots and
Robotiq provide STEP files for their products, using them
in an Unreal Engine AR application does not seem to be
natively possible. Instead, the provided STEP files had to be
pre-processed first in a CAD programme (to separate a singular
model of the whole technological artefact into components
for its several parts), after which the export of the CAD
programme had to piped through a 3D modelling programme
to convert it into a format Unreal could work with — while
having to deal with the different programmes utilizing different
coordinate systems.

c) Sustainability: Shortly after we acquired several
HoloLenses to use with our laboratories, an official notice

about them being discontinued was issued [26]. Thus, even
while we now have a working prototype, once a HoloLens
breaks, it is gone for good, and porting the software to another
type of AR display may well be more effort than to programme
it from scratch for the new platform. As such, we have to
assume that this software may fall out of use even sooner
than might be expected. Even before this, sustainability issues
were expected, as support for the HoloLens was dropped from
Unreal Engine after version 5.0 (with the current version
during development being 5.3), meaning that any further
development needs to rely on outdated software.

d) Computational Power: The prototype presented here
may seem like a light-weight application. In fact, it was
possible to launch both a virtual robot controller as well as
this prototype on a Surface Pro 7. However, considerable com-
putational capacity is required for it to actually run smoothly
and stably.

VIII. CONCLUSION

This paper presents a prototype application that implements
a virtual reality DT of a collaborative robot. The bulk of the
paper (Sec.s II-V) consists of descriptions of the system archi-
tecture and noteworthy implementation details one might need
to know in order to replicate this project. A sketch of the data
flow in the prototype is displayed in Fig. 1. Using UDP and
RTDE to transfer data between the HoloLens, the game engine,
and the robot controller, a DT could be implemented that
featured a bi-directional real-time mirroring of the physical
robot. Due to the nature of the system architecture, a physical
robot can be exchanged for a simulated one using the virtual
machine simulator provided by Universal Robots by simply
changing an IP address.

REFERENCES

[1] 1. Aubel, S. Zug, A. Dietrich, J. Nau, K. Henke, P. Helbing, D. Stre-
itferdt, C. Terkowsky, K. Boettcher, T. R. Ortelt, M. Schade, N. Kock-
mann, T. Haertel, U. Wilkesmann, M. Finck, J. Haase, F. Herrmann,
L. Kobras, B. Meussen, M. Soll, and D. Versick, “Adaptable digital labs
- motivation and vision of the crosslab project,” in 2022 IEEE German
Education Conference (GeCon), 2022, pp. 1-6.

[2] Precedence Research and GlobeNewswire, “Spending on robotic process
automation (RPA) software worldwide from 2020 to 2023 (in billion u.s.
dollars) [graph],” Available: https://www.statista.com/statistics/1309384/
worldwide-rpa-software-market-size/, 2023.

[3] Inkwood Research, “Size of the global market for industrial robots from
2018 to 2020, with a forecast for 2021 to 2028 [graph],” Available:
https://www.statista.com/statistics/760190/worldwide-robotics-market-
revenue/, 2021.

[4] ISO 10218-1:2011, “Robots and robotic devices — Safety requirements
for industrial robots — Part 1: Robots,” International Organization
for Standardization, Geneva, CH, Standard, 2011. [Online]. Available:
https://www.iso.org/standard/51330.html

[5] ISO/TS 15066:2016, “Robots and robotic devices — Collaborative
robots,” International Organization for Standardization, Geneva, CH,
Technical Specification, 2016. [Online]. Available: https://www.iso.org/
standard/62996.html

[6] M. Soll, L. Kobras, I. Aubel, S. Zug, C. Terkowsky, K. Boettcher,
T. R. Ortelt, N. Kaufhold, M. Schade, R. Sritharan, J. Steinert,
U. Wilkesmann, P. Helbing, J. Nau, D. Streitferdt, A. Baum, A. Bock,
J. Haase, F. Herrmann, B. Meussen, and D. Versick, “It’s a marathon,
not a sprint: Challenges yet to overcome for digital laboratories
in education,” in Smart Technologies for a Sustainable Future,
M. E. Avuer, R. Langmann, D. May, and K. Roos, Eds. Cham:

(71

(8]

9]

[10]

[11]

[12]

[13]

(14]
[15]
[16]
(171
(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Springer Nature Switzerland, 2024, pp. 220-231. [Online]. Available:
https://doi.org/10.1007/978-3-031-61905-2_22

R. Suzuki, A. Karim, T. Xia, H. Hedayati, and N. Marquardt,
“Augmented reality and robotics: A survey and taxonomy for
ar-enhanced human-robot interaction and robotic interfaces,” in
CHI Conference on Human Factors in Computing Systems. New
Orleans LA USA: ACM, 2022, p. 1-33. [Online]. Available:
https://dl.acm.org/doi/10.1145/3491102.3517719

R. K. Agca, “Using digital twins in education from an innovative
perspective: Potential and application areas,” Education Mind, vol. 2,
no. 2, p. 65-74, Dec. 2023. [Online]. Available: https://doi.org/10.
58583/Pedapub.EM2306

M. P. A. Murphy, “Covid-19 and emergency elearning: Consequences
of the securitization of higher education for post-pandemic pedagogy,”
Contemporary Security Policy, vol. 41, no. 3, p. 492-505, Jul.
2020. [Online]. Available: https://www.tandfonline.com/doi/full/10.
1080/13523260.2020.1761749

K. A. A. Gamage, D. I. Wijesuriya, S. Y. Ekanayake, A. E. W. Rennie,
C. G. Lambert, and N. Gunawardhana, “Online delivery of teaching
and laboratory practices: Continuity of university programmes during
covid-19 pandemic,” Education Sciences, vol. 10, no. 10, p. 291, Oct.
2020. [Online]. Available: https://www.mdpi.com/2227-7102/10/10/291
A. Berisha-Gawlowski, C. Caruso, and C. Harteis, The Concept of a
Digital Twin and Its Potential for Learning Organizations. Cham:
Springer International Publishing, 2021, p. 95-114. [Online]. Available:
https://link.springer.com/10.1007/978-3-030-55878-9_6

W. Kritzinger, M. Karner, G. Traar, J. Henjes, and W. Sihn,
“Digital twin in manufacturing: A categorical literature review and
classification,” IFAC-PapersOnLine, vol. 51, no. 11, p. 1016-1022,
2018. [Online]. Available: https:/linkinghub.elsevier.com/retrieve/pii/
$2405896318316021

F. Herrmann, M. Soll, L. Kobras, M. Schade, K. Boettcher,
D. Kaiser, I. A. Aubel, N. Kauthold, and P. Helbing, “Usability
checklist for cross reality laboratories,” Jan. 2025. [Online]. Available:
https://zenodo.org/doi/10.5281/zenodo.14329173

WEB LINKS

Universal Robots A/S, “URSe lightweight, versatile cobot,” https://www.
universal-robots.com/products/ur5-robot/, last accessed 2025-05-07.
Microsoft, “Microsoft hololens | microsoft learn,” https://www.
microsoft.com/en-us/hololens, last accessed 2025-05-07.

Robotiq, “Wrist camera | robotiq,” https://robotiq.com/products/wrist-
camera, last accessed 2025-05-07.

“Adaptive grippers | robotiq,” https://robotiq.com/products/
adaptive-grippers#Two-Finger-Gripper, last accessed 2025-05-07.
——, “Empower people, boost productivity, enhance adaptability |
robotiq,” https://robotiq.com/, last accessed 2025-05-07.

Universal Robots A/S, “Universal robots - robot step file - urSe -
e-series,” https://www.universal-robots.com/download/mechanical-e-
series/urSe/robot-step-file-urSe-e-series/, last accessed 2025-05-07
(needs login).

Robotiq, “Support | robotiq,” https://robotiq.com/support, last accessed
2025-05-07.

Autodesk Inc., “Autodesk inventor software | get prices & buy official in-
ventor 2025,” https://www.autodesk.com/eu/products/inventor/overview,
last accessed 2025-05-07.

Blender, “blender.org - home of the blender project - free and open 3d
creation software,” https://www.blender.org/, last accessed 2025-05-07.
Cameron-Micka, “Mixedreality-graphicstools-unreal/docs/lighting.md
at main microsoft/mixedreality-graphicstools-unreal github,”
https://github.com/microsoft/MixedReality- GraphicsTools- Unreal/blob/
main/Docs/Lighting.md, last accessed 2025-05-07.

“Introduction — ur_rtde 1.6.1 documentation,” https://sdurobotics.gitlab.
io/ur_rtde/introduction/introduction.html, last accessed 2025-05-07.
getnamo, lehuan5062, tamaynard, mikeseese, LordNed, gmpreussner,
bapin93, Deams51, tlightsky, KneshiHH, namse, anadin, iambeeble-
brox, seon geun, finger563, dobbyS5, staskjs, rwinright, Lootheo,
knapsu, and ASpookieGhost, “Github - getnamo/socketioclient-unreal:
Socket.io client plugin for the unreal engine.” https://github.com/
getnamo/SocketlOClient-Unreal, last accessed 2025-05-07.

T. Warren, “Microsoft is discontinuing its hololens headsets |
the verge,” https://www.theverge.com/2024/10/1/24259369/microsoft-
hololens-2-discontinuation-support, last accessed 2025-05-07.

