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Abstract. The CrossLab project aims at creating a new online labora-
tory paradigm in which various parts of an experiment are modular and
composable across institutional boundaries.

In this work, we show our progress on the development of the backend
infrastructure that drives the distributed and remotely coupled online
laboratory infrastructure developed in the CrossLab project. This infras-
tructure is a technical solution to enable the cross-elements and cross-
universities aspects of the CrossLab project, i.e., it enables the compo-
sition of various laboratory devices across different universities into one
experiment.

The backend infrastructure will be embedded in a larger system archi-
tecture which we describe briefly. The paper focuses on the details of the
REST Interface that the system architecture uses.

Keywords: Virtual and Remote Labs, Hybrid Take-Home Laboratories,
Software Development, Microservices

Source code: https://github.com/Cross-Lab-Project/crosslab

1 Introduction

In STEM education, hands-on training in laboratories is a crucial part of the
curriculum because it allows the hands-on experience of the theoretical knowl-
edge usually taught at universities [1]. Experience shows that these laboratories
allow students to understand the knowledge taught in a course better [2].
Laboratory work has a few drawbacks regarding time, staff, and material
needed compared to a classical lecture [3]. One method to partially overcome
these drawbacks is to use online laboratories [4, 5], which are web-accessible
versions of hands-on laboratories. The CrossLab project [6] aims at defining
solutions at the technical, didactical, and organizational levels to create digi-
tal laboratory objects, that mix diverse types of laboratories (cross-types), en-
able the composition of different laboratory objects (cross-elements), mix various

Users may only view, print, copy, download and text- and data-mine the content, for the purposes of
academic research. The content may not be (re-)published verbatim in whole or in part or used for
commercial purposes. Users must ensure that the author’s moral rights as well as any third parties’ rights
to the content or parts of the content are not compromised.

This is an Author Accepted Manuscript version of the following chapter: Johannes Nau and Marcus Soll,
An Extendable Microservice Architecture for Remotely Coupled Online Laboratories, published in Open
Science in Engineering - Proceedings of the 20th International Conference on Remote Engineering and
Virtual Instrumentation, edited by Michael E. Auer, Reinhard Langmann, Thrasyvoulos Tsiatsos, 2024,
Springer reproduced with permission of Springer Nature Switzerland AG. The final authenticated version
is available online at:
https://dx.doi.org/10.1007/978-3-031-42467-0_9




2 Johannes Nau and Marcus Soll

disciplines (cross-disciplines), and are accessible by multiple universities (cross-
universities). An exciting side benefit of the new paradigm developed in the
CrossLab project is that it enables the development of hybrid take-home labs
where actual hardware is located at the students’ homes [7].

This paper presents the current state of the application programming inter-
face (API) driving the CrossLab architecture. New laboratories can be created in
this architecture by freely combining different laboratory devices through a uni-
form protocol. A laboratory device in this context is the abstract representation
of inseparable elements of an experiment, i.e., a physical system that should
be controlled, the user interface that interacts with or shows the experiment
(including the user), or assessment systems that evaluate the user during the
experiment [8].

Furthermore, this architecture includes all necessary services for running a
remote laboratory while staying decentralized. The architecture closes a gap in
the current protocol standards for remote laboratories [9].

2 State of the Art

This chapter briefly describes the current state of laboratory architectures and
web architectures, which are needed to describe our proposed architecture.

2.1 Existing Architectures

There are several preexisting remote laboratory architectures. For example, the
GOLD:i lab [10] allows remote experiments, where experiments consist of a single
control unit and a single electromechanical model. While the system can run at
multiple locations and institutions, it tightly couples different components.

Another system widely used is the LabsLand system [11], which started as
the open source WebLab-Deusto [12] and developed into a commercial service.
LabsLand offers various remote and wultraconcurrent® experiments located at
different institutions. However, it does not allow changing of configuration, i.e.,
connecting new devices to a preexisting experiment.

The VISIR project [13] aims to design electronics laboratory systems, includ-
ing hardware and open-source software. Many universities have adopted VISIR
worldwide [14]. While VISIR provides the actual experiment and the needed soft-
ware, it does not provide any laboratory management and is often integrated into
other Systems like WebLab-Deusto [15].

Many digital teaching projects often disappear or are not sustainable (for an
overview of German projects, see [16]), which is also true for different remote
laboratory systems: The LabShare [17] project has a dead website at the time
of writing this paper, and the iLab project [18] closed in 2019 [19].

In addition, as shown in [9], there is currently no protocol for connecting
multiple single devices to a unified experiment. This means the configuration of
an experiment is always preconfigured or limited to only a few possibilities.

3 prerecorded experiments with actual data which can be replayed as wished
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2.2 Microservices

Microservices can be understood to be small (i.e., doing only one thing) and
autonomous (i.e., communication solely through network) services that work to-
gether [20]. Unfortunately, multiple definitions are used in literature [21]. Interest
in Microservices has risen over the last few years (cf. [21, 22]).

According to [22], microservices offer many benefits by dividing the applica-
tion into smaller, self-contained units. These smaller units can be understood and
tested more efficiently, and the technology can be chosen according to the task
a unit should solve. Deployment and management are easier since the different
microservices can run independently.

The same authors [22] pointed out potential problems from microservices.
For example, it is hard to find the correct dimension, so microservices are both
small and still large enough to be useful. In addition, the distributed nature
of microservices leads to different challenges, some of which are: APIs must be
stable or versioned, the attack surface is larger due to more exposed API, data
consistency issues can surface, and performance measurement is more challeng-
ing.

One crucial aspect is the run-time environment of microservices. Besides run-
ning on physical hardware, different technologies such as containers, virtual ma-
chines, containers over virtual machines, and serverless functions are described
in literature[21].

2.3 API Paradigms

Jin et al. describe in [23] multiple paradigms for web APIs. They divide between
Request—Response APIs (like REST, RPC, and GraphQL) and Event-Driven
APIs (like WebHooks, WebSockets, and HTTP Streaming). We want to focus
on the Request—Response APIs for this work.

According to [23], REST focuses on managing resources through create, read,
update, and delete operations (called CRUD pattern). Each URL eighter rep-
resents a resource (e.g., a device in a laboratory). Ressources can be statelessly
manipulated through standard HTML calls.

In contrast to REST, RPC describes actions [23]. Each URL typically repre-
sents an action, which can be called through HTTP containing different param-
eters and is answered by a response encoded in JSON or XML. There are other
protocols available under which RPC can be used.

Finally, Jin et al. [23] describes GraphQL as an API paradigm where the
client can define the data structure that the server should provide. Therefore,
only a single endpoint is needed. While GraphQL has several advantages for the
APT user, it increases complexity for the service provider.

2.4 API Modelling Languages + API-First-Design

There are multiple API modeling languages available to describe (REST) APIs:
RAML, API Blueprint, or OpenAPI [24]. While all API modeling languages are
similar, their syntax and supported tools differ.
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Although these languages differ in detail, all allow the usage of the API-First
Design: Since all interaction of microservices and all (business) logic is accessible
only through API, the modeling of well-designed APIs should be tackled early in
microservice development [25]. An API-First Design has multiple advantages, for
example, better testability (see [26] as an example) or loose coupling between
different components (see [27] as an example). Unfortunately, while the API-
First-Design is an emerging trend, there still needs to be more scientific research
in this area [25].

3 Architectural Challenges

Our architecture aims to build a system for experiments that cross the line
between different types of devices, different types of laboratories, different dis-
ciplines, and institutions (see [6] for more information). Because of this and the
distributed nature of such a system, we collected the following major require-
ments. All requirements were collected together with shareholders from each
participating institution.

1. Ease of Implementation: It should be easy for (new) participants to in-
tegrate their devices into the architecture. Therefore, it must be easy to
implement the required software interface.

2. Integrability: It must be easy for institutes to integrate our architecture
into their preexisting IT infrastructure (e.g., for authentication). The system
must be flexible where parts of IT infrastructure can be interchangeable (like
authentication or cloud services).

3. Adaptability: The system should be adaptable to new scenarios, like new
experiments, new applications, or new classes of devices.

4. Scalability: It should be easy to add new devices or institutions to the
system. Newly added devices/institutions should be fully integrable.

5. Partition tolerant: The system should be fully functional for an institu-
tion even if any (or all) other institutions stop using it (except institution-
spanning experiments).

4 High-Level Software Architecture

As the architecture is implementing the new remote laboratory paradigm from
[8], this work is heavily influenced by the architecture presented there.

4.1 Structural Description

As shown in Fig. 1, the system consists of a backend, a frontend, and multiple so-
called laboratory devices that connect to the backend and — when the experiment
is running — to each other.

The backend system uses a gateway to authenticate and route the requests
to the microservices that are only available through this gateway. The current
architecture uses four services:
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the devices that will register with the backend.

data and authenticate them at the gateway’s request.

5

Device Service — This service is exclusively responsible for interacting with
Identity Management Service — This service will hold all user-relevant

Experiment Service — This service lists, creates, and executes experiments.

— Booking Service — This service is responsible for booking devices and

selecting an appropriate one if a device from a device group is requested.

The structure is separated in this way to decouple the microservices from each
other. Ideally, each service will be containerized and run on a platform for con-
tainer orchestration. This approach will ensure good scalability towards a more
significant network load. The containerized applications also allow for effortless
deployment using tools like docker-compose. That way, the application will be
deployable for a wide range of people with varying technical expertise.

At the same time, this microservice architecture allows for easy replacement
of different services, making the architecture easy to change and evolve. E.g., a
common issue will be that different institutions want their respective identity
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Fig. 1. Crosslab architecture
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management systems. As the systems are decoupled, it is possible to change a
component without changes to the rest of the architecture.

Connecting to the backend are one or multiple frontends, usually imple-
mented as a website but could also be implemented as a plugin to a learning
management system (LMS) such as Moodle. The frontends allow users to create,
modify, and run different experiment setups. Because of the new paradigm from
[8] that we use here, prior to the execution of an experiment, the front end will
also create all necessary laboratory devices for a user that are necessary to view
and interact with the other devices in the experiment.

Lastly, the architecture’s structure includes a variety of laboratory devices. As
indicated above, each device will register with the Device Service and then keeps
a bidirectional connection to that service to receive instructions for configuration
and connection to other devices to form an active experiment.

4.2 Project Organisation

We use an API first approach (see Sec. 2.4) because it enables the development
of services by multiple institutions in parallel while not waiting for the service
implementations of the other institutions. In addition, this approach enables
us to fixate the API early and reduces the tedious work of updating the API,
especially with different institutions working on the architecture.

With an agreed API specification, it is also possible to validate implemen-
tations and ensure that all different implementations of this architecture are
working together in a federated setup.

The reference implementation of the architecture will be organized in a mono
repository [28]. This approach is chosen over multiple repositories because, in
that way, it is easier to keep track of all relevant components and manage access.
It should be noted that this decision is based on the fact that the architecture
is developed in small academic teams scattered over multiple institutions.

The mono repository is structured in the folder structure seen in Fig. 2.
The docs directory will contain all the documentation for the architecture in a
structure that is translateable by Jekyll to be hosted on a website .

4 This is already automated on the popular source code hosting website GitHub.
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Fig. 2. File Tree for the Monorepository
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The clients directory will contain all the clients used to interact with the
architecture from user interfaces or individual laboratory devices. The backend-
services directory will contain all the services described above. In this directory,
each folder represents a single service. Each service can have its own structure.
However, we require a Dockerfile in its root to build a complete Docker container
for each service.

The helper directory will contain all projects that are not directly deployable
for the application. That includes code generation tools and utility libraries that
might be used in multiple services. In this directory, each folder represents a
single package. The scripts directory will contain all scripts used by the developer
or the CI/CD solution. These might include test, build, and deployment scripts,
as well as scripts for often-needed actions.

5 Fine Level Software Architecture

The Domain Model for the architecture is shown in Fig. 3. We use a role-based
access control (RBAC) model, where each user has a role with a set of scopes
(e.g., add new devices, list devices, etc.). The laboratory devices can have differ-
ent types: A single physical or logical device has the type device. Our Domain
Model also allows for the grouping of devices; the resulting group can also be
seen as a device. Lastly, we provide the ability to create devices on the fly and
distinguish between devices created in the cloud or at the edge device of the user.
The most prominent example of an edge instantiable device is the user interface
that shows the webcam and experiment controls to the user in the browser. Each
device can have a set of services that it offers; these services generally map to
the device’s capabilities.

When an experiment starts, all involved devices are connected to each other
with peer-to-peer connections. Peerconnection objects represent these Connec-
tions.

Additionally, each Peerconnection holds the service configuration for each
service transmitted over the peer-to-peer connection it represents.

Each experiment comprises a set of roles representing one or multiple actual
devices, as well as a set of configurations for individual services. At the level of an
experiment, each (service-) configuration can have multiple participants, which
will be resolved to a peer-to-peer connection by the experiment service when an
experiment gets started. This means it is possible to connect, e.g., a webcam to
multiple participants. The participants of such configuration are roles that are
defined in the experiment. This indirection allows multiple devices to take the
same role in an experiment, which is useful when multiple users are involved in
an experiment.

According to the REST pattern, everything in our architecture (including
devices, experiments, connections between devices, and bookings) is mapped
as a resource. Each resource is identified as a unique URL (Uniform Resource
Locator) [29]; uniqueness between different institutions is guaranteed because
the URL contains the host, which typically is the institution’s web address.
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Fig. 3. Domain Model of the API. Dashed associations are realized by an URL reference

and, therefore, can be federated over multiple institutions.

All resources can be managed through the CRUD pattern:

Create: New resources can be created using HTTP POST request. The
body must contain all relevant information for the resource.

Read: Ressources can be read using a HTTP GET request to the URL of
the resource.

Update: An existing resource can be updated using a HTTP PATCH re-
quest. Only the attributes that should be changed must be provided, and
not all attributes can be changed.

Delete: Ressources can be deleted using a HTTP DELETE request to the
URL of the resource.
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Mapping the domain model from Fig. 3 to resources, we arrive at the following
service endpoints described briefly below.

5.1 Authentication Service

The authentication service is responsible for the authentication and management
of users and access tokens. For this, it maps the resources users and, as a
subresource of each user, the resources roles. The other services relying on the
authentication service will define the roles available.

The authentification service must provide a /auth endpoint, which the gate-
way uses to authenticate users. The endpoint is expected to return a JWT Token
[30], which is internally forwarded to the other services by the gateway.

Because of the simplicity of this service, it is easy to replace or extend it with
different authentication methods without changing the overall system.

5.2 Device Service

The Device Service manages two resources devices and peerconnections. The
devices resource contains the collection of all registered devices independently
of their type. Service Descriptions are mapped as an array directly to the device
resource.

The peerconnections resource contains a collection of Peerconnections.
The participants are mapped as an array together with their respective service
configurations.

The CRUD mapping of actions to resources is straightforward; this service,
however, also provides another signaling endpoint for each device. This end-
point allows sending messages to the device via a side channel (WebSockets),
which is used to build peer-to-peer connections later on.

5.3 Experiment Service

The experiment service only manages the resources experiments. All other ob-
jects from Fig. 3 are mapped as an array in the experiment object. The pri-
mary purpose of this service is to keep track of all experiments, manage their
state (created, booked, setup, running, and finished), and create all necessary
Peerconnections when an experiment is started.

5.4 Booking Service

The booking service allows users (here: persons or other services) to book one or
multiple devices. All users only access the booking system at their institution,
even if they want to book devices from other institutions. The booking service
will manage the cross-institutions bookings for the user.

When the user requests a valid booking, it is always accepted and put to
the status pending. If the booking contains any device group, it is automatically
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resolved, and an appropriate device is chosen (devices from their own institutions
are prioritized). Once all devices are reserved, the booking changes to booked. If
any device is unavailable, it changes to reject instead. If, at any point, a device
is not available anymore, there are two options: If it is from a device group,
another device will be booked; else, the booking will change to rejected, thus
freeing the rest of the devices. When a user wants to start an experiment, he
needs to lock the booking, thus preventing most changes (e.g., adding devices is
allowed, removing devices is not allowed) until the experiment finishes.

Currently, the booking service only allows for reservations beforehand. How-
ever, we later want to support other types of booking (e.g., spontaneous booking,
and priority booking, where others can use the devices but lose access if you need
them).

5.5 Federation

The federation service is not shown in the domain model but has an important
role. Because experiments and devices can be shared across multiple instances of
this system, each service must be able to communicate with other instances. As
this communication must be authenticated, the authentication service is used to
save the credentials for known instances and as an authenticating proxy server
for all other instances. (cf. Fig. 1).

6 Takeaways and Future Work

This paper presented the API used to implement the new remotely coupled web
experiment paradigm in the Crosslab project. The chosen microservice architec-
ture allows for easy system extension, while the formal specification of the API
allows for interoperability between different system instances. The API uses the
OpenAPI specification and is used to generate the server code as well as the
API client. The decision for the API first approach, as well as using the API
documentation, has already proven valuable. Using OpenAPI as the specifica-
tion language allowed us to generate different artifacts out of it: Automatically
updated documentation, generation of an API client, and the generation of vast
amounts of server code, including automatic validation of incoming requests. In
the future, we plan to include automatic tests based on the API specification.

However, there are a few downsides to this we experienced. While most of our
initial API design has held up, there were minor details (like the representation
of different kinds of devices or the way specific endpoints had to be called) that
we did not get right in the first draft. We updated the API, but that changed
the generated code leading to problems across the existing code base (some of
which were hard to spot). The API is currently in active development and will be
extended and refined in the future. The source code and complete documentation
are publicly available on Github.

Acknowledgement. This work as part of the project CrossLab [6] is funded by
Stiftung Innovation in der Hochschullehre
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